Accurate Analytical Self-Consistent Field Functions for Atoms. VI. The Ground States of Mo⁺ and Mo^{*}

CLEMENS C. J. ROOTHAAN Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois

AND

MIROSLAV SYNEK Department of Physics, De Paul University, Chicago, Illinois (Received 10 October 1963)

Self-consistent field calculations by the expansion method were carried out for the ground states of Mo⁺ and Mo. Compared with solutions of the Hartree-Fock equations by the numerical integration technique, the wave functions obtained are accurate to 2-3 decimal places, and the total energies to about 5 significant figures.

INTRODUCTION

CCURATE calculations of atomic wave functions A CCURATE calculations of accurate here by means of the self-consistent field (SCF) expansion method¹⁻³ have recently been carried out for a number of practical cases.^{4–8} This paper reports similar calculations for the $4d^5$, 6S state of Mo⁺ and the $4d^55s$, 7S state of Mo (these are the ground states of these systems).

These open shell configurations require the evaluation of the appropriate vector coupling coefficients suitable for our SCF formalism³; formulas and tables of these

FABLE I.	Optimized exponents ζ of the	ne basis functions
	for Mo ⁺ and Mo.	

TABLE II. Ei	genvectors of	coefficients	$C_{i\lambda p}$ for	r Mo+
--------------	---------------	--------------	----------------------	-------

2s •0.31507

0.00109

0.06576 0.441370.54425

0.02491 0.01841

0.01292

0.00074

0.00027

2*p* 0.82661

0.04848

0.16398

0.01383

0.00034

0.00004

-0.00004

Eigenvectors

3s 0.13262 0.00332

0.04912

0.51394 0.15555

1.03017

0.04848

0.01912

-0.00331

-0.35774

-0.01932

0.48088

0.60268

0.02173

-0.00362

3d 0.38510 0.01110 0.30358

0.38554

0.07042

-0.01812

-0.14011

4s -0.05169

0.00001

0.01321 0.06908

0.19074 -0.01722

-0.61565

0.02065

0.79148

0.37660

4p 0.12959

0.00590

0.00571

0.21178 0.27199

0.44730

4d - 0.10380 - 0.00296 - 0.07794

-0.07703

Basis Atom and	Mo ⁺	Mo	Basis	
function state	4d ⁵ , ⁶ S	4d ⁵ 5s, ⁷ S	func-	
15	42.000	42.000	tion	
35	46.657	50.183		•
35	35.659	34.807		1 <i>s</i>
35	26.613	24.367	1 <i>s</i>	0.98758
35	19.390	18.298	<u>3</u> s	0.01187
35	13.662	14.090	35	0.00792
35	8.605	8.587	35	-0.00045
35	7.585	6.759	35	0.00000
4.5	4 751	4 928	3s	0.00012
45	3 133	3 265	3s	-0.00037
5.	0.100	2,000	35	0.00027
5.		1 110	4 <i>s</i>	-0.00001
		1.119	4 <i>s</i>	0.00001
2.0	21.000	21.000		
- P 4 b	27.307	27.405		
4 b	19.939	19,980	2p	
4 b	13.336	13.096	4p	
4 h	8.896	8,799	4p	
4 h	4 492	4 468	4p	
4 b	2 704	2 751	4p	
Ξp	2.171	2.701	4 <i>p</i>	
2.1	14,000	14,000	4p	
54	24.604	26 473		
54 54	14 256	14 023		
54	0 566	0 522	3d	
5d	9.300	7 270	5d	
54 54	4 114	1.570	5d	
SU EJ	4.114	4.043	5d	
SU SI	2.230	2.123	5d	
34	0.975	0.912	5d	
			= 5d	
			7 7	

* This work was assisted by the Wright-Patterson Air Force Base, Ohio, under contract No. AF33(657)-8891, with the University of Chicago.

versity of Chicago.
¹ C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
² C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
³ C. C. J. Roothaan and P. S. Bagus, in *Methods in Computational Physics*, edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc., New York, 1963), Vol. 2.
⁴ C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).

0.10823 0.51536 0.00702 0.00130 0.53462 0.00031 0.04295 5d⁵ E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.

Rev. 127, 1618 (1962). ⁶C. C. J. Roothaan and P. S. Kelley, Phys. Rev. 131, 1177

(1963).

⁷ M. Synek, Phys. Rev. **131**, 1572 (1963). ⁸ T. L. Gilbert, P. S. Bagus, C. C. J. Roothaan, and H. D. Cohen, Phys. Rev. (to be published).

TABLE III. Eigenvectors of coefficients $C_{i\lambda p}$ for Mo.

TABLE IV. Calculated energies and comparison with experiment.^a

=

Basis func-			-						Ene	rgies rela ground st	tive to ate
tion			Eigenvector	5				<u> </u>			Calculated
	1s	2 <i>s</i>	35	4 <i>s</i>	5s	Atom		Calculated	Calcu	Fynari	minus
1 <i>s</i>	0.98754	-0.31502	0.13264	+0.05188	0.01327	ion	State	energy	lated	mental	mental
3s	0.00800	-0.00194	0.00181	+0.00038	-0.00008						
3s	0.01651	0.11790	-0.05957	-0.02145	-0.00439	Mo ⁺	$4d^{5}, {}^{6}S$	-3975.3308	0.2134	0.2609	-0.0475
3s	-0.01162	0.58494	-0.22926	-0.09814	-0.02954	Мо	$4d^{b}5s, TS$	- 3975.5442	0	0	0
3s	0.01209	0.34257	-0.46722	-0.18440	-0.03800						
3s	-0.00723	0.04105	0.20749	+0.06206	0.00534	^a See R	ef. 13.				
3s	0.00367	-0.00446	1.07280	+0.54237	0.15093						
3s	-0.00235	0.00398	0.00524	+0.06896	0.01986		т	ABLE V Orbital	energies	ć	
4 <i>s</i>	0.00048	-0.00108	0.02372	-0.74878	-0.25518		±	ADLE V. OIDICA		· · ·	
4 <i>s</i>	-0.00015	0.00031	-0.00535	-0.44972	-0.07175	<u></u>		1			
5 <i>s</i>	0.00003	-0.00008	0.00128	+0.00083	0.53425			Mo ⁺		Mo	
5s	-0.00001	0.00002	-0.00041	+0.00217	0.59981			4 <i>d</i> °, °S	4d°55, 15		'S
		а <i> і</i>	2.	4.		15	,	-721.44964		-721.1	9997
<u>.</u>		2p	3p	4 <i>p</i>		25	· .	-103.09458	5	-102.8	4930
2p	•	0.82000	-0.33737	0.12900		35	1	-18.82853		-18.5	8302
4p		0.04709	-0.01993	0.00079		4s	t i	-3.00874	:	-2.7	6183
4p		0.10550	-0.00997	0.00144		55		04 60000		-0.2	2201
4p		0.01410	0.50245	-0.22151		21	р Б			94.4	4233
4 <i>p</i>		-0.00085	0.57520			37 44	5	-1.97491		-1.7	2263
4p		0.00015	0.01937	0.72474		30	ĺ	-9.52999		-9.2	8263
4 <i>p</i>			-0.00310	0.42833		40	l ·	-0.60934		-0.3	5714
			31	47							
31			0 38246	0 10025							
5d			0.00240	-0.00417				37 1 .1	(17.1	(P / P	x
5d			0.33205	-0.07665			TABLE VI.	Virial theorem.	(values	of E_p/E_l	e.)
5d			0.31038	-0.10328	:						
50			0 10507	0.10020		At	om				
5d			0.01156	0 54941		or	ion	State		E_p/I	Ek
5d			-0.00206	0.51883	•	м		4.15 65		-2 000	0082
5d			0.00047	0.06305		M	0	4d55s. 7S		2.000	0102

TABLE VII. Radial functions $P_{i\lambda}(r)$ for Mo ⁺ .									
r	1 <i>s</i>	2 <i>s</i>	3s	4 <i>s</i>	2 <i>p</i>	3 <i>p</i>	4 <i>p</i>	3 <i>d</i>	4d
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.001	0.516	-0.164	0.069	-0.027	0.002	-0.001	0.000	0.000	-0.000
0.002	0.989	-0.315	0.133	-0.052	0.007	-0.003	0.001	0.000	-0.000
0.003	1.422	-0.453	0.191	-0.074	0.016	-0.007	0.003	0.000	-0.000
0.004	1.818	-0.578	0.243	-0.095	0.028	-0.012	0.004	0.000	-0.000
0.005	2.179	-0.692	0.291	-0.113	0.043	-0.019	0.007	0.000	-0.000
0.006	2.508	-0.794	0.334	-0.130	0.061	-0.026	0.010	0.000	-0.000
0.007	2.806	-0.885	0.372	-0.145	0.082	-0.035	0.013	0.001	-0.000
0.008	3.075	-0.967	0.406	-0.158	0.104	-0.045	0.016	0.001	-0.000
0.009	3.318	-1.039	0.436	-0.170	0.129	-0.056	0.020	0.001	-0.000
0.010	3.535	-1.101	0.462	-0.180	0.157	-0.068	0.024	0.001	-0.000
0.015	4.303	-1.295	0.541	-0.210	0.318	-0.137	0.050	0.005	-0.001
0.020	4.656	-1.325	0.549	-0.213	0.510	-0.219	0.079	0.010	-0.003
0.025	4.726	-1.233	0.505	-0.196	0.719	-0.308	0.111	0.019	-0.005
0.030	4.606	-1.055	0.423	-0.163	0.936	-0.399	0.144	0.030	-0.008
0.035	4.366	-0.816	0.315	-0.121	1.152	-0.488	0.176	0.045	-0.012
0.040	4.056	-0.540	0.191	-0.072	1.361	-0.572	0.206	0.062	-0.017
0.050	3.352	0.065	-0.076	0.033	1.743	-0.718	0.258	0.107	-0.029
0.060	2.663	0.666	-0.335	0.134	2.062	-0.827	0.296	0.164	-0.044
0.070	2.060	1.210	-0.560	0.221	2.309	-0.895	0.318	0.230	-0.062
0.080	1.562	1.670	-0.736	0.288	2.485	-0.922	0.325	0.304	-0.081
0.090	1.168	2.040	-0.860	0.334	2.595	-0.911	0.318	0.385	-0.102
0.100	0.863	2.310	-0.930	0.359	2.648	-0.865	0.298	0.469	-0.125
0.120	0.460	2.611	-0.928	0.349	2.614	-0.690	0.227	0.643	-0.170
0.140	0.240	2.655	-0.774	0.278	2.450	-0.439	0.129	0.815	-0.213
0.160	0.123	2.527	-0.519	0.167	2.213	-0.146	0.017	0.976	-0.252
0.180	0.063	2.300	-0.209	0.037	1.944	0.158	-0.097	1.121	-0.286
0.200	0.032	2.027	0.120	-0.098	1.672	0.453	-0.204	1.247	-0.312
0.250	0.006	1.345	0.874	-0.385	1.073	1.070	-0.409	1.467	-0.347
0.300	0.001	0.819	1.393	-0.543	0.647	1.462	-0.505	1.564	-0.339

r	1 <i>s</i>	2 <i>s</i>	3 <i>s</i>	4 s	2 <i>p</i>	3 <i>p</i>	4 <i>p</i>	3 <i>d</i>	4d
0.350		0.474	1.656	-0.562	0.376	1.641	-0.496	1.564	-0.296
0.400		0.266	1.715	-0.473	0.213	1.660	-0.409	1.495	-0.228
0.450		0.147	1.638	-0.311	0.119	1.574	-0.269	1.383	-0.144
0.500		0.080	1.484	-0.110	0.066	1.428	-0.102	1.250	-0.052
0.600		0.024	1.100	0.310	0.021	1.077	0.248	0.971	0.139
0.700		0.007	0.747	0.663	0.007	0.754	0.552	0.720	0.315
0.800		0.002	0.480	0.906	0.002	0.503	0.779	0.518	0.464
0.900		0.001	0.297	1.041	0.001	0.325	0.924	0.363	0.582
1.000			0.180	1.088		0.205	0.997	0.251	0.669
1.200			0.064	1.010		0.079	0.991	0.116	0.766
1.400			0.024	0.831		0.031	0.874	0.054	0.786
1.600			0.009	0.638		0.013	0.722	0.025	0.758
1.800			0.004	0.471		0.005	0.573	0.012	0.707
2.000			0.001	0.338		0.002	0.445	0.006	0.646
3.000				0.054			0.103		0.359
4.000				0.007			0.019		0.164
8.000									0.013
12.000									0.002
					1				

TABLE VII. (Continued)

TABLE VIII	. Radial functions P_i	$\lambda(r)$ for Mo.
------------	--------------------------	----------------------

r	1 <i>s</i>	2 <i>s</i>	3s	4 <i>s</i>	5 <i>s</i>	2 <i>p</i>	3 <i>p</i>	4 <i>p</i>	3 <i>d</i>	4d
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.001	0.515	-0.164	0.069	-0.027	0.007	0.002	-0.001	0.000	0.000	-0.000
0.002	0.989	-0.315	0.133	-0.052	0.013	0.007	-0.003	0.001	0.000	-0.000
0.003	1.422	-0.453	0.191	-0.075	0.019	0.016	-0.007	0.003	0.000	-0.000
0.004	1.818	-0.578	0.243	-0.095	0.024	0.028	-0.012	0.004	0.000	-0.000
0.005	2.179	-0.691	0.291	-0.114	0.029	0.043	-0.019	0.007	0.000	-0.000
0.006	2.508	-0.794	0.334	-0.131	0.033	0.061	-0.026	0.010	0.000	-0.000
0.007	2.806	-0.885	0.372	-0.146	0.037	0.082	-0.035	0.013	0.001	-0.000
0.008	3.075	-0.967	0.406	-0.159	0.041	0.104	-0.045	0.016	0.001	-0.000
0.009	3.318	-1.039	0.436	-0.171	0.044	0.129	-0.056	0.020	0.001	-0.000
0.010	3.535	-1.101	0.462	-0.181	0.046	0.157	-0.068	0.025	0.001	-0.000
0.015	4.303	-1.295	0.541	-0.211	0.054	0.318	-0.137	0.050	0.005	-0.001
0.020	4.656	-1.325	0.549	-0.214	0.055	0.510	-0.219	0.079	0.010	-0.003
0.025	4.726	-1.234	0.505	-0.196	0.050	0.719	-0.308	0.111	0.018	-0.005
0.030	4.606	-1.055	0.423	-0.164	0.042	0.936	-0.399	0.144	0.030	-0.008
0.035	4.366	-0.817	0.315	-0.121	0.031	1.152	-0.488	0.176	0.044	-0.012
0.040	4.056	-0.540	0.191	-0.072	0.018	1.361	-0.572	0.206	0.062	-0.016
0.050	3.352	0.065	-0.076	0.033	-0.009	1.743	-0.718	0.258	0.107	-0.028
0.060	2.663	0.666	-0.335	0.135	-0.035	2.062	-0.827	0.296	0.164	0.043
0.070	2.059	1.210	-0.560	0.222	-0.057	2.309	-0.895	0.319	0.230	0.060
0.080	1.562	1.670	-0.730	0.290	-0.074	2.485	-0.922	0.326	0.305	-0.080
0.090	1.108	2.030	-0.800	0.330	-0.080	2.595	-0.911	0.318	0.385	-0.100
0.100	0.863	2.310	-0.930	0.360	-0.092	2.048	-0.805	0.298	0.469	-0.122
0.120	0.460	2.011	-0.928	0.350	-0.089	2.014	-0.090	0.227	0.644	-0.100
0.140	0.240	2.055	-0.774	0.279	-0.070	2.450	-0.439	0.129	0.810	-0.209
0.100	0.123	2.528	-0.519	0.108	-0.042	2.213	-0.140	0.017	0.977	-0.247
0.180	0.003	2.301	0.1209	0.037	-0.008	1.944	0.158	-0.097	1.121	-0.279
0.200	0.032	1 244	0.121	-0.098	0.027	1.072	0.455	-0.204	1.240	-0.303
0.230	0.000	0.810	1 202	-0.587	0.100	0.647	1.070	-0.410	1.400	-0.338
0.300	0.001	0.019	1.595	-0.545	0.139	0.047	1.402	-0.303	1.504	0.331
0.330		0.474	1 715	-0.304	0.141	0.370	1,041	0.497	1.004	-0.290
0.450		0.147	1 630	-0.312	0.068	0.215	1 574	-0.409	1 384	-0.142
0.500		0.080	1 484	-0.110	0.013	0.066	1 428	-0.102	1 250	-0.051
0.600		0.024	1 100	0 312	-0.007	0.000	1 077	0.248	0.070	0.136
0,000		0.024	0 746	0.666	-0.182	0.007	0 754	0.553	0.719	0.100
0.800		0.002	0.479	0.910	-0.229	0.002	0.503	0.780	0.518	0.454
0.900		0.001	0.297	1.045	-0.240	0.001	0.325	0.925	0.364	0.568
1.000			0.180	1.091	-0.220	01001	0.205	0.998	0.252	0.653
1.200			0.064	1.011	-0.122		0.079	0.991	0.116	0.748
1.400			0.023	0.829	0.009		0.031	0.873	0.053	0.771
1.600			0.009	0.635	0.141		0.013	0.720	0.025	0.747
1.800			0.003	0.467	0.259		0.005	0.572	0.013	0.699
2.000			0.001	0.334	0.357		0.002	0.444	0.007	0.641
3.000				0.049	0.561			0.105		0.374
4.000				0.004	0:505			0.020		0.189
8.000					0.114					0.021
12.000					0.010					0.004
					· · · · · · · · · · · · · · · · · · ·					

coefficients for a large class of states have recently been derived.9

RESULTS AND DISCUSSION

Some of the important results are presented in Tables I-VIII. Since the basis sets were chosen so as to identically satisfy the cusp conditions,⁶ we did not include the cusp values in the tables.

We believe that the total energies computed represent the Hartree-Fock values to about five significant figures, and that the radial functions $P_{i\lambda}(r)$ represent the Hartree-Fock functions to 2-3 decimal places. Better accuracy could be obtained by extensive exponent optimizations, which would require a large amount of computer time.

A numerical SCF calculation without exchange on Mo⁺ was published by Ridley.¹⁰ The numerical orbitals

⁹G. L. Malli and C. C. J. Roothaan, Phys. Rev. (to be published). ¹⁰ E. C. Ridley, Proc. Cambridge Phil. Soc. **51**, 702 (1955).

for Mo⁺ of this work disagree with those by Ridley (after normalization) mostly in the second decimal place; in the critical area of the outer loop of the 4dorbital they disagree even in the first decimal place. A similar disagreement exists for Cu⁺, where calculations with^{7,11} and without¹² exchange are available.

Since total experimental energies are not available, we can only meaningfully compare the difference of the computed energies of Mo⁺ and Mo with the experimental ionization potential¹³ of Mo. This is shown in Table IV.

ACKNOWLEDGMENTS

The authors appreciate the cooperation of the staff of the Computation Center at the University of Chicago, and the personnel of the IBM-7090 computing facilities at Wright-Patterson Air Force Base.

¹¹ W. W. Piper, Phys. Rev. 123, 1281 (1961).

¹² D. R. Hartree, Proc. Roy. Soc. (London) **A141**, 282 (1933). ¹³ C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, June 1949.

PHYSICAL REVIEW

VOLUME 133. NUMBER 5A

2 MARCH 1964

Electron-Energy Distribution Function and Electron Average Energy in $Ar-CO_2$ and $Ar-H_2$ Mixtures^{*}

MARTIN A. UMAN

Department of Electrical Engineering, The University of Arizona, Tucson, Arizona (Received 7 October 1963)

Electron-energy distribution functions and electron average energies are calculated for low-energy electrons in Ar-CO₂ and in Ar-H₂ mixtures in the presence of a static electric field. It is shown that one part of carbon dioxide or of molecular hydrogen in 10 000 parts of argon is sufficient to alter appreciably the electron-energy distribution function and the electron average energy from the values they would have in pure argon.

I. INTRODUCTION

HAT small amounts of molecular gases, when added to argon, alter appreciably the value that the electron drift velocity exhibits in pure argon has been verified both experimentally¹ and theoretically.^{2,3} There is, however, very little mention in the literature of the change in the electron distribution function and the electron average energy induced by the addition of molecular impurities to argon. A technique for solving the Boltzmann equation for the phase-space distribution function for electrons immersed in certain binary

gas mixtures in the presence of a static electric field has been presented in a previous article.² In the present study, use is made of this theory to calculate the electron-energy distribution function and electron average energy as a function of the molecular-impurity concentration in argon. Carbon dioxide and molecular hydrogen have been chosen as the molecular impurities. The Ar-CO₂ mixture has been chosen because of the good agreement between experimental and theoretical electron drift velocity data for this mixture.² The agreement between theory and experiment lends validity to the experimental cross-section and molecular energyabsorption data used in the theoretical analysis. The Ar-H₂ mixture has been chosen for study because electron drift velocity measurements in this mixture have been used to determine the momentum transfer and inelastic cross sections for hydrogen and argon.⁴

A1266

^{*} This research has been supported by National Science Foundation Grant GP-800.

tion Grant GP-800. ¹ For example: J. Allen and B. Rossi, U. S. AEC Report MDDC 448, 1944 (unpublished); L. Colli and U. Facchini, Rev. Sci. Instr. 23, 39 (1952); W. H. English and G. C. Hanna, Can. J. Phys. 31, 768 (1953); D. Errett, Doctoral thesis, Purdue University, 1951 (unpublished); J. M. Kirshner and D. S. Toffolo, J. Appl. Phys. 23, 594 (1952); N. E. Levine, Masters thesis, The University of Arizona, 1963 (unpublished). ² M. A. Uman and G. Warfield, Phys. Rev. 120, 1542 (1960). ³ M. A. Uman, Phys. Rev. 123, 399 (1961).

⁴ A. G. Engelhardt and A. V. Phelps, Scientific Paper 63-928-113-P4, Westinghouse Research Laboratories, Pittsburgh, Pennsylvania, 1963 (unpublished).